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Abstract. Analogues of the PoincarBirkhoff—Witt theorem for several pairs of Lie groups
acting on complex manifolds are studied. These results lead to algebraic analogues of a theorem
of | Segal on the two-sided regular representation of a unimodular locally compact group for dual
representations of some infinite-dimensional Lie groups on generalized Bargmann—Segal-Fock
spaces. Generalized Casimir invariants for these dual representations are also developed.

1. Introduction

The Poincag—Birkhoff-Witt theorem, hereafter referred to as PBW, is one of the most
fundamental results in the theory of Lie algebras and Lie groups. In[Po] H Péiestablished

the existence of the universal enveloping algebra of a Lie algebra and proved the so-called PBW
theorem (see also [Bi, Wi]); thus introducing the principal device for converting Lie algebra
problems into associative algebra problems. In the context of this paper we state the following
version of PBW which is essentially the one given by Poiacar

LetG be a Lie group and leg be the Lie algebra of right (resp. left) invariant vector
fields onG. Letl(g) denote the associative algebra of right (resp. left) invariant
differential operators of all orders. IfX;)1<i<, (resp.(Yi)i<i<x) is @ basis (ofy) of
right (resp. left) invariant vector fields then the ordered mononiiasd X;, ... X;,
(resp.Y;, ... Y )withi; < i < --- < iy s > 1, constitute a (vector space) basis for

Ug).

For a more abstract formulation of PBW in terms of the universal enveloping algebra of an
abstract Lie algebra see, e.g., [Bo, Ja, Di, Va]. Our first PBW-type theorem can be formulated
as follows. Sei = C"*, G = GL(k, C) andG’ = GL(n, C). ThenG (resp.G’) acts on\
by right (resp. left) matrix multiplication. If is a holomorphic function (henceforth denoted
by ‘of classC®(M)’) on M we defineR(g) f (resp.L(g")f),g € G, g’ € G', by

(R(®))N(Z) = f(Zg) and (LY NZ) = fU(g)'2) ZeM.
Then we have the following definition.

Definition 1.1. Let D*(M) denote the algebra of alC® differential operators onM (see
equation (2.6) for a precise definition &f(M)). A differential operatorD of D®(M) on
M is said to be right (resp. left) invariant iD(R(g) f) = R(g)(Df) (resp.D(L(g)f) =
L(g)(Df)) forall g € G (resp.g’ € G'), and for all f of classC®(M).

0305-4470/99/325975+17$30.00 © 1999 IOP Publishing Ltd 5975
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Theorem 2.1 is then a generalization of PBW for the péif, G); in particular, when

= k it is the PBW theorem for the grougL(n, C). Now suppose > 2n and let
M ={Z e C"* : 727" = 0, rankZ) = n}, thenM is a complex analytic manifold. Let
G = SO(k,C)andG’ = GL(n, C), thenG andG’ act onM by right and left multiplications,
respectively. We then have an analogue of PBW for this pair of groups. Similarly, we have
the analogues of PBW for other pa{G’, G) whereG is Spx (C) or GL(k, C) ® GLY (k,C)
(whereGL‘/ (k, C) is the abbreviated notation for the groGg. (k, C) acting contragradiently
on the manifoldM) andG’ is a complex general linear group (see [TT1] for details on these
pairs).

Now let G be any unimodular locally compact group andliétG, 1) denote the Hilbert
space of functions or square-integrable relative to the Haar meagureLet R (resp.L)
denote the right (resp. left) regular representatio oh L2(G, 11). The closurer (resp.C) in
the weak operator topology of the set of all linear combinations aRiiz@ (resp.L(g)), g € G,
is the right (resp. left) weakly closed group algebrabfThe set of all bounded operators on
L?(G, n) that commute which each elementf{resp.c) is called thecommutant oRR (resp.

L) and is denoted bR’ (resp.L’). Let Zx (resp.Z.) denote thecentreof R (resp.£). In
physics elements of a centre of some kind are sometimes ¢aiextalized Casimir operators

or Casimir invariants(the quadratic invariant of a Lie group is the classical Casimir operator
or Casimir element; for further details see, e.g., [Ba+Ra]). In [Sel] | Segal proved that

=L,L =R and 2, =Zx=RNL. (1.1)

A version of this theorem for von Neumann algebras of dual pairs was given in [Hol] and an
algebraic version for classical groups is given in [Ho2]. As a consequence of theorem 2.1, in
this paper we shall give several analogues to this beautiful theorem with Bergmann—Segal—
Fock spaces playing the role 8f(G, 1), algebras of differential operators playing the role

of the algebra of bounded linear operators/giiG, 1), dual pairs of either finite- or infinite-
dimensional groups replacing the unimodular locally compact group, universal or generalized
universal enveloping algebras replacing group algebras, and centralizers replacing commutants,
etc. In this paper we prove these theorems for the(@air(n, C), GL(k, C)) and its infinite-
dimensional analogues. This will enable us to prove similar theorems for other pairs of groups
(G’, G) which will appear in a forthcoming paper. Parts of these results were announced in
[TT1,TT2].

2. A PBW theorem for the pair (GL(n,C), GL(k, C))

Recall thatG = GL(k,C), G’ = GL(n,C) andM = C"™*. ForZ € M setd,; = %
1< a <n1<i<k. LetdR (resp. d.) denote the differential ok (resp.L) which we shall
refer to as the infinitesimal action & (resp.L). Then it can be easily shown that the sets

= Z Zylayj and aﬁ— Z Zagaﬁg

,,,,,,,,,,

1<« B<n 1<i j<k (2.1)
are infinitesimal generators. We have

[Rij, Ruv] = 8juRiv — 8uiRyj 1<i,ju,v<k 2.1y

[Lag, Luv] = 8guLay — SvaLup 1<, B, u,v<

Obviously, ther;; (resp.Ls) generate a Lie algebra isomorphicgtgk, C) (resp.gl(n, C)).
SinceL(g)R(g)f = R(g)L(g")f forallg € G, ¢’ € G', andf € C?(M) it follows that
the Lqg (resp.R;;) constitute a system afght (resp. left) invariant vector fields oM. Let
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¢’ (resp.g) denote this Lie algebra of right (resp. left) invariant vector fields. ot M
we choose an ordering on the row and column indiceg ahd write(«, 8) < (u, v) (resp.
@, j) < (u,v))if («, B) precedesu, v) in this ordering (respi, j) precedesu, v)).

Theorem 2.1.LetD(g’) (resp.D(g)) be the associative subalgebra®f (M) which consists
of all right (resp. left) invariant differential operators alf.

(i) If n > k then the ordered monomials 1 add L5y .. . LYLY ... L5 .. LY. Ly
(resp._R*ff_...R;l‘,‘j) form a basis forD(g') (resp.D(g)), wherer;; (resp.s;;) are non-
negative integers such that; + rip+---+ry = r,r > 1 (resp.syy+--- +s,, = s,
s> 1.

(i) If n < k then the ordered monomiald and L}...LI (resp. R} R} ...
...RYRZ...R% R Ry ... R);) form a basis forD(g') (resp.D(g)), wherer;; (resp.
s;j) are non-negative such thagy +-- - +r,, =r,r > 1(resp.sig+si2+- -+ + 55, = 5,
s = 1).

Proof. By symmetry it suffices to prove the theorem for the case of right-invariant differential
operators. LetB denote the ordered basi9:i,..., 0w, 921,..., 02, On1,...,0nk} Of
vector fields onM. Then the matrix of the ordered systesnof vector fields{L1, ...,

L1, L12, ..., Ly, ..., L1, ..., L,,}with respect td3 at Z is thenk x n?> matrix dL, defined

by

n n n
_ ,—/\ﬁ ,—/\ﬁ .. /—/\ﬁ _
‘ { z
‘ { z
dL, = (2.2)

k{ 7

where thek x n block-matrices on the main diagonal are all equaktoand the other off-
diagonak x n block-matrices are all equal to 0. We prove the theorem by considering the two
cases where either> k orn < k.

(i) Casen > k. Write Z as

k{ Z
n—k{ Zn—k

and letM, denote the subset of af € M such that dgtZ,) £ 0. Then it can be easily
shown thatM, is an open and dense subsetMf Thus if Z € My then rank(Z) = k and
the firstk rows of Z are linearly independent and the last k rows of Z can be expressed
as linear combinations of the firstrows. From the matrix (2.2) it follows that the system
A={L1lz,..., Liilz, L12lz, ..., Li2|z, ..., L1.lz, ..., Lwu|z} constitutes a basis for the
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tangent space t&f at Z. In fact, the matrix of this ordered basis relative to the ordered basis
BatZis

k k k
_ ,—Jb\ /—Jb\ .. ,—/&\ _
" { 2
k: 2
. (2.3)

k{ z

Let g € G denote the inverse of the matré, then we have

= Z gjiLja

Thus the matrix of the ordered ba&igelative to the ordered basiis

Oui 1<a<n 1<i<k. (2.4)

(2.5)

If D®(M) denotes the algebra of afl“ differential operators oM then every element
D € D”(M) can be uniquely written as

D= Y f»d" (2.6)
I()I<s
where (r) = (r11, ..., ) IS @ multi-index of integers;; > 0, [(r)| = ria + -+ + 1,

9" = 955...00%, and f € C°(M) (see, e.g., [Va], p 6). Define a filtration (M) by
setting

DO(M) = { > f<r>a<’>} s > 0.

[(r<s

The smallest integer > 0 such thatD € D (M) is called the degree db. An elementD
is calledhomogeneous of degredf D is of degrees andD ¢ D¢ ,(M). By induction on
degrees, using the fact that

8jiLja(guvLlug) = 8ji&uvLjaLug + &ji(L ja(guv))Lug (2.7)
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and equation (2.4), it follows that a monomigl'a.% ... a., 1 < « < n, can be expressed
as a sum of terms of the form

I1 Tai gl glrdip S 1% 4 terms of lower degrees i, (2.8)

ion L\ e (Faidk
where

(™ )

(rai)l-~~(rai)k
denotes a multinomial coefficient and; = (r41); + -+ + Ga)j, 1 < j < k, with
Sq1F - Fsgr =141+ - - - Ty It follows that for a fixed multi-indexr) with |(r)| = s
OporE . OO O = Y el LY. LS. LB Ly
S1pteFSp=s

+ terms of lower degree if,,, (2.9)
where(s) = (s11,...,s.) and a((:; are polynomials ing;; and thus are functions of class
C?(M).

Now observe that by definition ab®(M) terms of degree zero are just scalars, and
equation (2.4) expresses homogeneous terms of degree@n@iterms of degree one ib,,, .
Using induction on the degraeeof D, with the first step of the induction being equation (2.4),
we prove theth step by assuming the — 1)th step and by using equation (2.t rewrite the
terms of degreeC s — 1 in equation (2.9) in function of the ordered basidip,. It follows
that

D= Y f»d” =" heL" (2.10)
1(r)I<s I(r)I<s
where L) = LWL ... LYLE ... LG ... LT ... Ly and h, are functions of class

C”(Mo).
To prove the unigueness of the coefficiehts we again proceed by induction of the
degrees of D. Fors = 1 we have

D=cl+)" fuidai 1<a<n 1<i<k

wherel is the evaluation map defined by
120 =1 (2) (VZ e M,Vf e C”(M))
andc € C. Equation (2.4) implies that

Zfaiaai :Zfai Z gjiLja
o,i a,i j=1..k
=5 (X s )
a,j Ni

i=1,...k

.....

that
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From the uniqueness of the coefficierfis it follows that

> Zjihaj = fui 1<a<n 1<i <k (2.11)

j=1,....k

Equation (2.11) is a system ok linear equations ink unknownsi,;, 1 <o <n,1 < j <k.
The coefficient matrix of this system is precisely given in equation (2.3). By assumption this
matrix is invertible, therefore the coefficients; are uniquely determined. Thus step one
of the induction holds. For stepwe observe that it is sufficient to prove the uniqueness of
the coefficients:,, of the homogeneous elements of the highest degrdadeed, suppose
that any differential operator of degrege s — 1 can be uniquely written in terms of the
ordered basi€ " with coefficients of clas€“ (M), then using equation (2/1ip rewrite the
remainder in equation (2.9) in terms of the ordered baSsof degree< s — 1 we obtain the
uniqueness of the coefficients., of terms of degreel s — 1 of D in equation (2.10). Now
let (s) = (s11, ..., su) such that(s)] = s and recall thatL,s = > ,_;  Zuedge. Then a

.....

equation:

511 Sik p S21 Sk Snl Sk __ (8) qr11 Ik qr21 ok 'n1 Tk

Ly LELY . L. Ly Ly = Y bSom .o g o o
rigteetrpge=s

+terms of lower degree ify; (2.12)

where thebgf; are polynomial functions iZ. Now for all multi-indices(r) and(s) such that

I(r)] = |(s)] = s let A = (a")) denote the matrix with row indes) and column indexr)

©
wherea,) are defined by equation (2.9), and similarly Rt= (b{’)). Then equations (2.9)

Q)
and (2.12) imply that
90 = 3 ( ) b;;;ag;)aw (2.13)
I)l=s

I(s)l=s
From the uniqueness of the expression of a differential operator in terms of the ordered basis
3" equation (2.13) implies immediately th&A = I, where! is the identity matrix. It
follows thatA is the inverse oB. In equation (2.10) leD, denote the homogeneous term of
degrees of D then

Dy = Z f(r)a(r) = Z h(S) Z b((j;a(r)

[(r)]=s [($)|=s [(r)|=s

=> ( > bgf;h(x)>8(’). (2.14)
[(r)|=s

l(s)|=s

Let F = (f) denote the column matrix with row index), and similarly setd = (h)).
Equation (2.14) immediately implieBH = F, or using the fact thatl is the inverse of8
we getH = AF. The uniqueness of then implies the uniqueness bf;, for all multi-
indices(s) such that(s)| = s. Thus the induction is complete, and therefore, the proof of the
uniqueness of coefficients,, in the expression ab in terms of L") is also achieved. Since
My is open and dense iif we may assume that,, € C°(M).

Now if D is a right-invariant differential operator then equation (2.10) implies that

( > h(r)L(r)(R(g)f))(Z) = R(g)( > h(r)L(r)f>(Z) (2.15)

[(NI<s [(nI<s
forall f € C*(M), g € G,andZ € M. Since theL,z are right-invariant vector fields it
follows that theL " are right-invariant differential operators. Thus equation (2.15) becomes

D hn@UY(Ze) = Y hey(ZOAL f)(Zg) (2.16)

[I<s [I<s
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forall g € G and all f € C*?(M). The uniqueness of the coefficieritg, implies that
h(r)(Z) = h(r)(Zg) VZeM Vg eq. (217)

SinceH = AF anda((g)) are polynomials irg;; and since locally the last — k rows of Z
can be expressed as linear combinations of the firstws, it follows that thef(,, can be
considered as analytic functionszf alone, and hence eagh, is an analytic function irz,;,

1 < «,i < k. Condition (2.17) implies that eadh,, is locally constant, and we can patch
the neighbourhoods together to show that gaghis globally constant sinc#f is connected.
This completes the proof of the theorem for this case.

(ii) Casen < k. To prove the theorem for this case we make use of the special case of
the previous one whem = k. ThenM = C"*¥ is naturally embedded i***. Write every
element ofC*** in the form [}] with Z; € M. ThenG acts onC** via ([7]. &) — [7:4].

From part (i) withk = n we have two bases fdp(g), and they are related by equations (2.9)
and (2.12). For each degreeve choose an ordering of these bases as follows.

The corresponding basis elememts ... 3% and LY} ... L;* are listed first and the
corresponding basis elementg' ... 9,/ ... ;" and Lt} ... L] ... L with some exponent
rij > 0,n < i < k, are listed last. In both cases the exponefitsum up tos. From
equations (2.9) and (2.12) we deduce that with this ordering the mattieesl B factored in
block matrices as

A0 B 0
A= [ 0 A”} and B = [ 0 B”] (2.18)

whereA’ (resp.B’) is the matrix of the first set of basis elemeat8 (resp.L™) in terms of
the first set of basis elements” (resp.d™), and similarly forA” and B”. ThusA’B’ = I
andA”B" = 1.

Now let D|Zy = 3. . . < Srinr (Z1)0111Z1 ... 05| Z1 be a right-invariant
differential operator oi£”**. Then obviouslyD is also a right-invariant differential operator
onC**; the functionsf,,, ,,, can be considered as functions@h which are independent
of the variableZ,. As in the case (i) we now proceed by induction on the degread we
may only consider the case of a homogeneous differential opebatfrdegrees. Then for
s =1D = f1a011+-- -+ fudu + fa10210+ - + fudy + -+ fu10 -+ fudu. By part
(i) and our ordering we have
D =hy Lo+ hiplor+- - +hy Ly +holap+ - +hy L+

thytlin + .o+ hy Ly hpsgaLpera + -+ hyg L
where theh;; are scalars. This leads to the following systems of linear equations:
hi1 fi1 hja
[z + [ =] : 1<i<n, and zZ1| : | =0 n<j<k.
hi fik h jk
(2.19)
Again we may suppose tha = [2] is an invertiblek x k matrix. This forces the
Rin+1, ..., hix, L < i < n to be zero because thg, are independent of,. This also
implies thathj; = hjo = ... = hj; = 0forn < j < k. ThusD can be written uniquely as
>i j=1...n hijLji where they;; are constants. Now suppose the theorem holds for differential
operators of degre€ s—1, and consideb = thmk:s Srin.r 075 - .. 9%, ahomogeneous
right-invariant differential operator of degreeWith our new ordering equation (2.14) implies
that

BH =F and B'H"=0 (2.20)
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whereH’ is the column matrix with entries,, , andH” is the column matrix with entries
equal to the remaining,,,. ..., r; > 0 andi > n. SinceB” is invertible H” equals 0.
Sinceforj > n Lj;; = z’gzl Zj0i¢, 1 < i < n, depends on the variablgy, and a formula
analogous to (2.8) expressifig; L5? ... L} interms ofd;}" . .. 9;; implies that whenever the
exponent; in the monomialLj; ... Lj”; ... L}t is positive the corresponding coefficidjﬁji

in equation (2.12) must depend on the variaBje If we order the base®} and{L"} in
such a way that the basis elements involvigg...d;/ ... oy andLyy ... LY ... Lyt with

j > n ands;; > 0 (the lexicographic ordering for example) then the equaBoH’ = F
implies that the last columns of the mati#X(; > n) involve Z, and the corresponding last

rows of H' must be zero sinc€ does not depend afi,. Thus we have shown that

D= Z rypor L73 - L L
rigtetry,=s
where the coefficients,,, ,, are scalars. This completes the proof of part (ii) and hence of
the theorem as well. O
Remark 2.2.

(i) If we consider the symmetrized form of the ordered mononfialg, ... Ly g,, i.€.,
> oey. Laywpow - - - Lagi poy, Where  is the symmetric groups of indexthen it can
be easily shown that the coefficiets, in equation (2.10) are symmetric. Most of the
algebraic proofs of PBW follow this direction. Our proof for the case k follows the
proof of PBW in [GO].

(i) As we can see from the proof of the theorem the coefficilegfgtS)f the matrixB are
polynomial functions irZ. Taking into account that the coefficierits, are scalars it
follows from equatiorBH = F that the coefficientg(,, are polynomials inZ. Thus if
U(g) (respl(g')) denotes the universal enveloping algebrg (esp.g’), whose definition
already appeared in [Po], then

U(g) = D(g) and Ug) =D(g).

3. An algebraic analogue of Segal’'s theorem for Bargmann—Segal-Fock spaces

If Z = (Z;)isanelementof™* letZ = X;; +/-1¥;;; 1 <i <n, 1< j < k. If
dX;; (resp. &;;) denotes the Lebesgue measuréomve let dZ denote the Lebesgue product

measure oit"**. Define a Gaussian measyren C"** by
du (Z) = 7" exp[- Tr(ZZ*)]dZ. (3.1)

A function f : C"*¥ — C is holomorphic square-integrable if it is holomorphic on
the entire domairC"** and iff(cm | £(Z2)|?du(Z) < oco. Let F, . denote theBargmann—
Segal-Fockspace of all holomorphic square-integrable functions. Endowed with the inner
product

(flg) = fc f(2)g(Z)du (2) 1,8 € Fuxi (3.2)

Fnxx has a Hilbert space structure. It can be easily verified that the inner product defined by
equation (3.2) coincides with the following inner product:

(f.8) = F(D)8(2)| 70 (3.3)

wheref (D) denotes the formal power series obtained by replaZindy the partial derivatives
0,i (1 < @ < n,1<i < k). Note that the subspadg ., of all polynomial functions o<
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is dense inF, . Later in this section we will use equation (3.3) to define inner products on
generalized Bargmann—Segal-Fock spaces when eittwek, or both, tend to infinity.

Let Go = U(k) (resp.Gy = U(n)) then it is easy to verify that the representati®g,
(resp.Lg,) defined onF, . by right (resp. left) translation is unitary. L&t; ® Rg, denote
the joint action ofG; x Go onF, «x by

[(Le, ® Ra,) (g, &) f1(2) = f((g) Zg) (3.4)

forall (g, g) € Gy x Goand f € F,««. Then the representatiodis;; and R¢, aredual (see
TT1]) and we have the following decomposition:

fnxk = Z@I(M (35)
)

where in equation (3.5) the lab@l) denotes both the signature of an irreducible representation
of Gy andGq of the form(my, mo, ..., m,) with my > m» > --- > m, > 0 non-negative
integers and- = min(n, k). The subspac&® denotes the&x)-isotypic component, i.e.,
the direct sum of all irreducible subrepresentationskef (resp.Lg;) that belong to the
equivalence claskg, (resp.Ag;). Moreover, the restriction dfg; ® Rg, to I isirreducible;
i.e, 7% ~ V"% @ W, whereV< (resp.W’%) is an irreducibleGo-module of classgig, )
(resp.Gy-module of clasgig;)). Moreover, the vector

foy(Z) = AT ™ (A)ATT"(Z) ... A" (Z) ZeCm* (3.6)

with A;(Z), 1 < i < r, theith principal minor ofZ, is the highest weight vector corresponding
to the signaturéig;, A¢,) (see [Ze]). Sinc& (resp.G’) is the complexification o6 (resp.
Gy) the ‘Weyl's unitarian trick’ (cf [Va]) implies that the representatibr® R of G’ x G’ on
Z™ is also irreducible (but of course not unitary) with the same signature 1) and the
same highest weight vectdy,,. Thus we have a multiplicity-free decomposition®f, into
irreducibleG’ x G-submodules.

We now consider the Weyl algebié, ., of differential operator$” ., ¢ 2”8
with polynomial coefficientsZ = (Z,), 9 = (3u:), Z" = Z7} ... Z;*, 99 = 0y} ... 0%,
¢y € C, andegs) # 0 for at most finitely many multi-indices'), (s). Then as an algebra
W,.xx is generated by then2 generator<Z,,;, d,; subject to the relation

[autis Zﬁ]] = azﬂ’ [Zoli’ Z,Bj] = [aai’ 8;3]] = O

where [, ] denotes the commutator aaﬁf is the Kronecker symbol which equals kif= 8
andi = j and O otherwise. For more details on Weyl algebras see, e.g., [Di, Eh].

The Weyl algebra¥, ., acts onP, ., and hence otF, ., by formal differentiation. It
is easy to verify that the elemen#$”d® form a basis for the vector spa®, ;. Let W™

nxk

be the subset of all linear combinationsf’ 8 such that(r)| + |(s)] < m. Then clearly

Wm WM, C WM SoW,. is afiltered algebra. Sev Y = ¢, for w € W, the integer
m > Osuchthat € W™, butw ¢ W 'is called theorder ofw. then the Weyl algebr#/,, .

is the subalgebra of the algelirét (M) of all differential operators defined by equation (2.6)
for which f,, are polynomial functions.

Definition 3.1. Let A be a subalgebra of the Weyl algeb¥d,,; then the centralizer (or
commutant) of4 in W, is defined as the set

{w e Wy @ [w,a] =0, VYa € A}.
The centre ofA is defined as the set
ZA) ={we A:[w,a]l =0, Va € A}.
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Clearly the universal enveloping algebragg) and U (g’) (cf remark 2.2 (ii)) are
subalgebras of the Weyl algeb#g ;. Inthis contextwe have the following corollary 3.2 which
is an algebraic analogue of Segal's theorem. Note that corollary 3.2 is essentially theorem 7
(p 553) together with the discussion on Capelli identities (p 564) of [Ho2]. However, our proof
is very different from that of [Ho2]. Our proof follows immediately from theorem 2.1, in which
D(g’) (respD(g))is by hypothesis the algebra of right (resp. left) invariant differential operators
with analytic coefficients (see equation (2.6)) (a local property), but surprisingly theorem 2.1
implies that these coefficients are polynomials (cfremark 2.2 (ii)) (a global property). Whereas
[Ho2] already assumes th&X(g') andD(g) are subalgebras of the Weyl algelva, ;.

Corollary 3.2. The universal enveloping algebi4(g’) is the centralizer of the universal
enveloping algebra/(g) in the Weyl algebra¥,,..;, and vice-versa. Moreover,

ZU() = Z2WU(@)) = U@ NU().

Proof. From remark 2.2 (ii) we know thd¥(g) = D(g) andi/(g’) = D(g'). Now it is easy
to show that a differential operatd is right (resp. left) invariant if and onlyR;;, D] = 0,
Vi,j = 1,...,k (resp. L, D] = 0, Vo, 8 = 1,...n). Then theorem 2.1 implies that
the centralizer ot/ (g") in W, isU(g), and vice versa. By definition the centreloéfg) is
contained in botli/(g) and its centralizer itW, ., so obviouslyZ@(g)) = U(g) NU(g).
Similarly, ZU(g')) = U(g") NU(g). Thus the proof of the theorem is complete. O

Remark 3.3. In physics, ifG is a symmetry group of some physical system, then the spectra of
the G-invariant operators determine the observable quantum numbers of the physical system.
Elements of the centre of the universal enveloping algebra of the Lie algeGrarefsometimes
called Casimirinvariants (cf, e.g., [Ba+Ra] or[Ze]). In[Ba+Ra] Weyl algebras are also called
Heisenberg algebras ([Di] gives a slightly different definition of a Heisenberg algebra) and
several important theorems relating Heisenberg fields and Lie fields of classical groups are
proved.

Generators of Casimir invariants of classical groups are well known (see, e.g., [Ba+Ra]
or [Ze]). However, in the context of corollary 3.2, the minimal number of algebraically
independent generators &f(i/(g) (resp.Z U (g')) may differ from the one given in [Ba+Ra]
or [Ze]. Thisis nota contradiction but reflects the statement of theorem 2.1 and the fact that we
have an explicit decomposition &, into isotypic components with double signatures (and
hence ‘double spectra’). To wit we consider the following example described in the appendix.

From the appendix, as an example, we consider the ease 2 andk = 3. Then
{1, Tr([L]), Tr([L]?} generatesZ((U(g')). SoTr([L]®) can be expressed as a polynomial in
1, Tr([L]), and Tr([L]?). From equation (A.3) we see tha@t([R]?) can be expressed as a
polynomialin 1,Tr([R]) andTr([R]?). Thus, in general, if we fix, for example, and consider
the casek arbitrary with £ > n, then to compute the spectra of the representaiiaim 7, ..«
we only need to consider theCasimir invariantsTr([L]'), 0 < i < n. All of these facts
are, of course, theoretically evident since corollary 3.2 affirms Bt (g)) = ZU(g)).
Nevertheless they are important in order to understand the generalization of corollary 3.2 to
the case of infinite-dimensional unitary and general linear groups. This is what we will turn
our attention to.

Representation theory éf(co) (andG L. (C)) has a long history. Starting with the work
of Segal in [Se2], it was thoroughly investigated by Kirillov in [Ki], Stratila and Voiculescu
in [St+Vo], Pickrell in [Pi], OI'shanskii in [Ol1], Gelfand and Graev in [Ge+Gr] and Kac in
[Ka], to cite just a few. A more complete list of references can be found in the comprehensive
and important work of OlI'shanskii in [OI2]. For our work we will mostly quote the latter.
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Let Go(k) andG (k) denote the unitary groufd (k) and the general linear grodpL (k, C),
respectively. Then thinductive limitsGo(co) = lim_, Go(k) = J;o; Go(k) andG(c0) =
lim_, G(k) = U=, G(k) are defined as follows:

G(00) = {g = (gij)i,jen : all but afinite number of;; — §;; are 0 ang is invertiblg
and
Go(c0) = {u € G(oo) i u* =u"1Y.

Definition 3.4 (G | OlI'shanskii). A unitary representation of the grodpy(oco) is called tame
if itis continuous in the group topology in which the descending chain of subgroups of the type
{(10k f)}, k =1,2,...constitutes a fundamental system of neighbourhoods of the id&gtity

ConsiderGo(co) and assume that for eaéha unitary representatiofRy, H;) of Go(k)
is given and an isometric embedding (of Hilbert spa¢esy; — H+1 commuting with the
action of Go(k) is given (i.e.,iy o Ry (u) = Ry+1(u) o iy Yu € Go(k)). Let H,, denote the
Hilbert completion of_J;~; Hy, then there exists uniquely a unitary representatioR gfof
Go(00) onH,, defined by

Ro) f = Re(u) f if ue Golk) and  f e H,.

The representation (R, H) is called the inductive Ilimit of the sequence
{(Ry, Hx)}. Then we have the following theorem (see [OI2] for a proof.).

If the representation&R;, ;) are all irreducible then the inductive limiR.,, Hoo)
is also irreducible.

Let Aoy = (ma,....,my), m1 = ... = my = 0, m; € N, be the signature of an
irreducibleGo(k)-module{p,, V*5®}. In [OI2] it was shown that

All unitary irreducible tame representations @fy(co) are inductive limits of
sequences of the forfp;, V*%®}, where in each(A) = (m1, my,...,...) m; are
equal to0 if i is sufficiently large.

It follows from the ‘Weyl's unitarian trick’ that all irreducible tame representations of
G(o0) are inductive limits of sequences of the fofp, V*o®}.

Definition 3.5 (G | OlI'shanskii). A representation ofGg(co) (resp. G(oco)) is called
holomorphic if it is a direct sum (of any number) of irreducible tame representations.

Now consider again the dual action@f(n) x Go(k) on the Hilbert spacé, .. Fixn and
letGo(n, 00) = ;=4 Go(k). Obviously the natural embedding: 7, «x < Fx«+1) Satisfies
thei; o (L(Gb)” ® R(Go)k)(u’, u) = (L(G,O)n ® R(G’O)k (u', u))oiy for all (I/t/, u) € Gb(ﬂ) x Go(k).
Let F, o denote the Hilbert completion ©ff;2; F.««, and let{L ), ® R(Go)..» Fuxoo) be the

inductive limit of the sequencie ), ® R(G,).» Fuxr}- Then we have the following theorem.

Theorem 3.6. The representatiof g;), ® R(Gy)., (resp-Ls, ® Rg,,) ONF,xx is holomorphic
and the Hilbert spaceF;, ., is decomposed into an orthogonal direct sum

Fuxoo = ) ®L1 (3.7)

)

where in equation (3.7) the labelh) denotes both the signature of an irreducible
representation of Gy(n) and of Go(n,o0) of the form (mi,mo,...,m,) and
(my,ma, ..., m,,0,0,...), respectively. The restriction éfc,), ® R(,)., (resp.L¢, ® Rg.,)
to the isotypic componert”  is irreducible. Moreover the vector,, defined by
equation (3.6) but witt¥. € C"* is the highest weight vector corresponding to the double
signature(Ag: , Ag,,)-



5986 T Ton-That

Proof. Firstlet us observe that the highest weight vegigrof the irreducibleGo(n) x Go(k)-
modulez'?, remains the same for dll> n. Sincef, is a cyclic vector for each”, , k > n,

it follows that we have the embedding

(A) (2) (2)
In xk In x (k+1)

such that
A (A
it o (Ligp, ® RGowlyn ) @', 1) = (Ligy, ® RiGoklzo )@’ u) o ig”

forall (', u) € Gy(n) x Go(k). Therefore, as an inductive limit of irreducible representations
LGy, @ Ry lrm s irreducible.  Since at each stage we have the orthogonal direct

SUM Fr = Y ;) ®Layy at the limit we must haveF, oo = Y ;) ®Zsr0o, and thus the

nx

proof of the theorem is complete. O

Now letGy(00) x Go(o0) = |2, Go(n, 00) and letF.« denote the Hilbert completion
of U;’l‘;l}'nxoo. Then following the same process as in theorem 3.6 we can prove that
{L (G} ® R(Go)osr Fooxoo} (r€SP{Lc, ® Ri,,, Fooxoo}) IS the inductive limit of the sequence
{LGy), ® RGon» Frxoo) (1€SP{Lg, ® Ra.,» Fuxoo})- Similarly if (1) = (mq, mo, ...) isthe
signature of either an irreducible tame representatio’ ¢fo) or of G (co) with m; equal to
0 for sufficiently large, then the restriction of. ;.. ® R(q,).. t0 the(r)-isotypic component

Iéﬁ)xoo is irreducible as the inductive limit of the sequence

{L(GO)" ® RGo)s .0 /5);300
Corollary 3.7. The same conclusions as in theorem 3.6 holdd§fco) x Go(oo)-modules
Fooxoo ANAZL .

Remark 3.8. A proof of corollary 3.7 can be found in [Ol2] where it is referred to as a Peter—
Weyl theorem for the grou@o(co).

Now preserve the notations of theorem 3.6xfand consider the chaif, «x C Fxx+1) C
- C Fuxoo- FOr each paikn, k) let g(n, k) andg’(n, k) the Lie algebras generated by the
infinitesimal operators defined by equation (2.1). Consideintre¥se(or projective limit (see,
e.g., [Ro] for the definition of inverse limits) of the inverse system of modigés, j), v/}
where for each pai(i, j), i < j, the connecting morphism}[j cg(n,j) = g, i)is the
truncation map. For example, if

ot,B = Z Zagaﬁ[ and foﬂ = Z 'ZMBM 1<a, ﬂ <n

theny;/ (Lfﬂ) = L;ﬂ. Letg'(n, o0) = lim _ g(n, k) denote the inverse limit of the system of
modules{g’(n, k), xpl."}. Then clearlyy’ (n, 0o0) is the Lie algebra defined by the generators

00
LZ;OO = Z Zagaﬂg 1 < o, ,B < n (38)

where in equation (3.8) the;’;oo act on the inductive chaift,«x C Fixk+1) C .- C Fuxoo
by formal differentiation. Let/(g'(n, c0)) denote the universal enveloping algebrg'¢t, co)
then the action off'(n, o) extends obviously to an action df(g'(n, oo)) on the inductive
chainF, ., C Fax+d) C o C Faxoo-

The Lie algebra of the infinitesimal action@{n, co) onF, . . is defined by the generator

RI%™ = Z Z,i0,) Vi, j € N. (3.9)

.....

To define thedual unlversal enveloping algebta U/ (g'(n, o0)) is a little more delicate.
For this we must generalize first the notion of a Weyl algebra to fit our context.
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Definition 3.9. An element of the generalized Weyl algel¥a, . is a formal series or sum in
the column indices of monomials in the indeterminateg,landdg;; 1 < o, B < n,i, j € N.

It is clear thatV, . is an algebra in the formal sense. However, to handle the scalars in
the operations of this algebra requires caution. For example, in remark 3.8 withwe can
define the elements TL]*), Tr([R*]), s = 1, of W, xo DY

Tr((L]*) = (LI5®)* = (Zza)

oo
Tr((R]) = > RiiyRisis .- Risy R = Zid; i,jeN
i1,i,=1

but the relations (A.3) and (A.6) must be handled with care. To wit we compute

(3.10)

Tr((R]?) = Z RijRj; = Z(Rii +Z,2;9;0))

i,j=1 i,j=1
= (2) Tr([L]) — Tr([L]) + (Tr[L])?

where the symbat denotes the formal serigs’Z; in the indeterminate 1. With this definition
whenn = 1 equation (A.6) generalizes to

Tr((R]%) = Tr((L]%) + 2(Z — D(Tr((L)* + (£ — D> Tr((L)).

This can be formalized by letting (%) denote the commutative polynomial ring o@m the
indeterminates, thenW, ... becomes an algebra OVEI(Z). Clearly W, o0 acts onF,xoo
by formal differentiation antUk 1 Waxi is contained iMV, <. Moreover the projection
map pr : Waxeo — Wox is defined by truncation. Similarly we can defidég(n, 0o)) as
the algebra which consists of formal series or sums generated b§; trend X; i, j € N.
An example of an element @1 (g(n, 00)) is Y 75_1 (D1 Zai0uj) (X1 Zpjdp:). Clearly
U2, U(g(n, k)) is contained irtd(g(n, co)). ObviouslyU(g'(n, 00)) andl(g(n, 0o)) are
subalgebras ofV, . In this context we have the following generalization of theorem 3.3.

Theorem 3.10.The universal enveloping algebrd(g'(n, 00)) is the centralizer of the
universal enveloping algebi@(g(n, cc)) in the generalized Weyl algebid), .., and vice
versa. Moreover, i (U (g (n, 00))) (resp. Z(u(g(n 00)))) denotes the centre btf(g (n, 00))
(resp.Ui(g(n, 00))) thenZ(U' (g (n, 00))) = Z(U(g, (n, 00))) = U(g (n, 00)) NU(g(n, ).

Proof. For eachk let p; be the projection of the inverse lindit(g'(n, co)) which is defined
by truncation then

PrU(g (n, 00))) = U(g (n, k).

Sinceld(g'(n, k)) is the centralizer adf{ (g(n, k)) in W, .« and we have the chalni(g(n k)) C
U(gn, k +1)) C --- C U(g(n, o0)) it follows that the centralizer aff (g(n, 00) iN W, oo IS
U(g'(n, 00)). The converse can be proved in a similar fashion. The proof of the statement
regarding the centres is now obvious. |

Finally, let g(co, c0) denote the inverse limit of(n, 0o0). Thusg(oco, 0o0) is generated
by the basis elementB> = > 07, Zuida;; i,/ € N. Let g'(00,00) = Up2,g'(n, 00),
then g'(co, c0) is the Lie algebra generated by the basis eleménts = Zf’il Z4i0gi;
a, B € N. Similarly to Definition 3.8 we define the Weyl algebvé..,., which consists
of elements which are formal series or sums in both row and column indices of the monomials
in the indeterminates 17,;, anddg;; o, B,i, j € N. Thus Wagxoo IS @n algebra over the
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commutative ringP (3_). The universal enveloping algebrsg’ (oo, 00)) andif (g(oo, 00))

are defined similarly. Obviously they are subalgebra®\af, ... Let Z (U (g(co, c0)) and
Z(U(g (00, 00))) denote their respective centres. Then, similarly to theorem 3.10, we have
theorem 3.11 as follows.

Theorem 3.11.The universal enveloping a[gebMa(g’(oo, 00)) andif (g(oco, 00)) are mutual
centralizers in the generalized Wey! algebfa, ... Moreover, we have

ZU(g (00, 00))) = Z(U(g(00, 00))) = U(g (00, 00)) NU(g(co, 00)).
Remark 3.12.

(i) Elements of the centres defined in theorems 3.10 and 3.11 are called generalized Casimir
invariants. In [OI3] a notion of generalized Casimir invariants are defined but it is
not clear to us if they have any connection with ours. It can be easily shown that the
families {Tr([L"**°]*)}s>0, {Tr((R"**°]*)}s>0 form two bases for the common centre
of U(g'(n, o0)) and U(g(n, 00)), where Tr([L"**®]*) and Tr([R"**]*) are defined,
respectively, by

Tr([LnXOO]S) — Z LX00 [ nxoo
oy 1

o102 TS
..... og=

and

Tr(R™™)) = > RUX.RI™

i11,.0ig=1
Finally, note that in our process we have fixe@énd letk — oo, and then lets — oo,
but if we reverse the roles afandk the same conclusions still hold.

(ii) These generalized Casimir invariants act on the inductive limfits., and Fuoxo0o by
formal differentiation. It can be shown that their spectra satisfy a Chevalley—Racah-
type theorem and this fact is used to decompose tensor products of irreducible tame
representations al/ (co) in [Ho+TT].

4. Conclusion

We have shown that a PBW theorem can be generalized to thé@aimn, C), GL(k, C))

and a Theorem by Segal can be generalized for the p@its(n, C), GL(k, C)),
(GL(n,C), GL1xx(C)) and (G Loxo(C), GLx (C)). We also gave a generalization of
the notion of Casimir invariants and they seem to have important applications to physics;
especially in the problem of explicit decompositions of tensor products of irreducible tame
representations df (co). In part Il of this paper we will give the same generalizations to other
classical dual pairs.

Appendix

Let [L] (resp. [R]) the matrix with entried, g, 1 < o, B < n (resp.R;;; 1 < i, j < k) then
we have two sets of generators of Casimir invariantg)r), Tr([R]*), s > 1, corresponding
to the representatioris and R, respectively.

Fors = 1 we have

Tr((L]) = ;LW = Xa: (Zzaiaa,) => (;Zw‘aaf> = Z Ri = Tr(R).

i
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Fors = 2 we have

Tr(L]1>) =) LopLpa =Y (Z za,.a,s,-) (Zﬂ,aa,)
a.fp i J

a.p

( Z thi aai + Z Zai Zﬂj aﬂi a"‘j)

i ij

2
a.p
Z (Laot + Z Zoi Zgj 3/31'304).
a.p

ij

So
Tr(L) =nTr(L) + > > Zai Zp;0pi0a (A1)
OB i
and
Tr((R]?) =) RijR;i =) (Z Zaiaotj) (Z Zﬁjaﬁz)
iJ iJ o B
=> (Z ZaiOui + Y Zai ZpjOu 3ﬂi>
ij a o,p
iJ o.p
So
Tr((R]?) = k(TH[RD + Y > Zai Zpj0u;0pi- (A.2)
i,j ap

It follows from equations (A.1) and (A.2) that
Tr([R]?) = Tr((L]?) + (k — n) Tr((L])

TH(LID) = Tr(RTD) + (1 — ) Tr(R)). (A.3)
Fors = 3 we have, after skipping some tedious computations,
Tr(L]?) = Y LapLpyLyo = 20 TE([L]?) + (Tr(L])? — (n* + 1) Tr([L])

a,By
N ZaiZgi Zyedpidy 0 (A.4)
o, B,y i,j,0
and
Tr([R®) = 2k Tr([R]?) + (Tr((RD? — (P + DT (R + D Y Zai Zpj Zoy130jOpedyi-
i,j,0 B,
e (A.5)

From equations (A.4) and (A.5) it follows that

Tr([RT?) = Tr(L]®) + 20k — m) Tr([LI%) + (k — m)® Tr([L]) (A6)

Tr((L]®) = Tr([R]®) + 2(n — k) Tr([R]?) + (n — k)* Tr([R]).

For s large the computations become very complicated, but using induction we can show that
Tr([R]*) can be expressed as

Tr(RT) = Y o Tr(L]) (A.7)

i=1,..,s
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where the constants are integers depending erandk, andc, = 1. Thus if we consider the
canonical filtrationi4 (g))s>o (and similarly(l4 (g"))s>0) and letGr(g) denote the associated
graded algebra then the maps

@5 1 ZiU@)/ Zs1U©@) —> Z,U))/ Z,-1(U(9))

which send T([ R]*) onto Tr[L]*), s > 0, define a vector space isomorphism of the graded
algebra associated witki(i/(g)) onto the graded algebra associated v/ (g')).
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