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Abstract. Analogues of the Poincaré–Birkhoff–Witt theorem for several pairs of Lie groups
acting on complex manifolds are studied. These results lead to algebraic analogues of a theorem
of I Segal on the two-sided regular representation of a unimodular locally compact group for dual
representations of some infinite-dimensional Lie groups on generalized Bargmann–Segal–Fock
spaces. Generalized Casimir invariants for these dual representations are also developed.

1. Introduction

The Poincaŕe–Birkhoff–Witt theorem, hereafter referred to as PBW, is one of the most
fundamental results in the theory of Lie algebras and Lie groups. In [Po] H Poincaré established
the existence of the universal enveloping algebra of a Lie algebra and proved the so-called PBW
theorem (see also [Bi, Wi]); thus introducing the principal device for converting Lie algebra
problems into associative algebra problems. In the context of this paper we state the following
version of PBW which is essentially the one given by Poincaré.

LetG be a Lie group and letg be the Lie algebra of right (resp. left) invariant vector
fields onG. Let U(g) denote the associative algebra of right (resp. left) invariant
differential operators of all orders. If(Xi)16i6n (resp.(Yi)16i6n) is a basis (ofg) of
right (resp. left) invariant vector fields then the ordered monomials1 andXi1 . . . Xis
(resp.Yi1 . . . Yis ) with i1 6 i2 6 · · · 6 is ; s > 1, constitute a (vector space) basis for
U(g).

For a more abstract formulation of PBW in terms of the universal enveloping algebra of an
abstract Lie algebra see, e.g., [Bo, Ja, Di, Va]. Our first PBW-type theorem can be formulated
as follows. SetM = Cn×k,G = GL(k,C) andG′ = GL(n,C). ThenG (resp.G′) acts onM
by right (resp. left) matrix multiplication. Iff is a holomorphic function (henceforth denoted
by ‘of classCω(M)’) on M we defineR(g)f (resp.L(g′)f ), g ∈ G, g′ ∈ G′, by

(R(g)f )(Z) = f (Zg) and (L(g′)f )(Z) = f ((g′)tZ) Z ∈ M.
Then we have the following definition.

Definition 1.1. Let Dω(M) denote the algebra of allCω differential operators onM (see
equation (2.6) for a precise definition ofDω(M)). A differential operatorD of Dω(M) on
M is said to be right (resp. left) invariant ifD(R(g)f ) = R(g)(Df ) (resp.D(L(g′)f ) =
L(g′)(Df )) for all g ∈ G (resp.g′ ∈ G′), and for allf of classCω(M).

0305-4470/99/325975+17$30.00 © 1999 IOP Publishing Ltd 5975
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Theorem 2.1 is then a generalization of PBW for the pair(G′,G); in particular, when
n = k it is the PBW theorem for the groupGL(n,C). Now supposek > 2n and let
M = {Z ∈ Cn×k : ZZt = 0, rank(Z) = n}, thenM is a complex analytic manifold. Let
G = SO(k,C) andG′ = GL(n,C), thenG andG′ act onM by right and left multiplications,
respectively. We then have an analogue of PBW for this pair of groups. Similarly, we have
the analogues of PBW for other pairs(G′,G)whereG isSp2k(C) orGL(k,C)⊗GLX(k,C)
(whereGLX(k,C) is the abbreviated notation for the groupGL(k,C) acting contragradiently
on the manifoldM) andG′ is a complex general linear group (see [TT1] for details on these
pairs).

Now letG be any unimodular locally compact group and letL2(G,µ) denote the Hilbert
space of functions onG square-integrable relative to the Haar measureµ. Let R (resp.L)
denote the right (resp. left) regular representation ofG onL2(G,µ). The closureR (resp.L) in
the weak operator topology of the set of all linear combinations of theR(g) (resp.L(g)),g ∈ G,
is the right (resp. left) weakly closed group algebra ofG. The set of all bounded operators on
L2(G,µ) that commute which each element ofR (resp.L) is called thecommutant ofR (resp.
L) and is denoted byR′ (resp.L′). Let ZR (resp.ZL) denote thecentreof R (resp.L). In
physics elements of a centre of some kind are sometimes calledgeneralized Casimir operators
or Casimir invariants(the quadratic invariant of a Lie group is the classical Casimir operator
or Casimir element; for further details see, e.g., [Ba+Ra]). In [Se1] I Segal proved that

R′ = L,L′ = R and ZL = ZR = R ∩ L. (1.1)

A version of this theorem for von Neumann algebras of dual pairs was given in [Ho1] and an
algebraic version for classical groups is given in [Ho2]. As a consequence of theorem 2.1, in
this paper we shall give several analogues to this beautiful theorem with Bergmann–Segal–
Fock spaces playing the role ofL2(G,µ), algebras of differential operators playing the role
of the algebra of bounded linear operators onL2(G,µ), dual pairs of either finite- or infinite-
dimensional groups replacing the unimodular locally compact group, universal or generalized
universal enveloping algebras replacing group algebras, and centralizers replacing commutants,
etc. In this paper we prove these theorems for the pair(GL(n,C),GL(k,C)) and its infinite-
dimensional analogues. This will enable us to prove similar theorems for other pairs of groups
(G′,G) which will appear in a forthcoming paper. Parts of these results were announced in
[TT1, TT2].

2. A PBW theorem for the pair (GL(n,C), GL(k,C))

Recall thatG = GL(k,C), G′ = GL(n,C) andM = Cn×k. ForZ ∈ M set∂αi = ∂
∂Zαi

,
16 α 6 n, 16 i 6 k. Let dR (resp. dL) denote the differential ofR (resp.L) which we shall
refer to as the infinitesimal action ofR (resp.L). Then it can be easily shown that the sets

Rij =
∑

γ=1,...,n

Zγ i∂γj and Lαβ =
∑

`=1,...,k

Zα`∂β`

16 α β 6 n 16 i j 6 k (2.1)

are infinitesimal generators. We have

[Rij , Ruv] = δjuRiv − δviRuj 16 i, j, u, v 6 k
[Lαβ, Lµν ] = δβµLαν − δναLµβ 16 α, β, µ, ν 6 n.

(2.1)′

Obviously, theRij (resp.Lαβ) generate a Lie algebra isomorphic togl(k,C) (resp.gl(n,C)).
SinceL(g′)R(g)f = R(g)L(g′)f for all g ∈ G, g′ ∈ G′, andf ∈ Cω(M) it follows that
theLαβ (resp.Rij ) constitute a system ofright (resp. left) invariant vector fields onM. Let
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g′ (resp.g) denote this Lie algebra of right (resp. left) invariant vector fields. ForZ ∈ M
we choose an ordering on the row and column indices ofZ and write(α, β) 6 (µ, ν) (resp.
(i, j) 6 (u, v)) if (α, β) precedes(µ, ν) in this ordering (resp.(i, j) precedes(u, v)).

Theorem 2.1.LetD(g′) (resp.D(g)) be the associative subalgebra ofDω(M) which consists
of all right (resp. left) invariant differential operators onM.

(i) If n > k then the ordered monomials 1 andLr11
11L

r12
21 . . . L

r1k
k1L

r21
12 . . . L

r2k
k2 . . . L

rn1
1n . . . L

rnk
kn

(resp.Rs11
11 . . . R

skk
kk ) form a basis forD(g′) (resp.D(g)), whererij (resp. sij ) are non-

negative integers such thatr11 + r12 + · · · + rnk = r, r > 1 (resp.s11 + · · · + snn = s,
s > 1).

(ii) If n < k then the ordered monomials1 and L
r11
11 . . . L

rnn
nn (resp. Rs11

11R
s12
21 . . .

. . . R
s1n
n1R

s21
12 . . . R

s2n
n2 . . . R

sk1
1k . . . R

skn
nk ) form a basis forD(g′) (resp.D(g)), whererij (resp.

sij ) are non-negative such thatr11 + · · · + rnn = r, r > 1 (resp.s11 + s12 + · · · + skn = s,
s > 1).

Proof. By symmetry it suffices to prove the theorem for the case of right-invariant differential
operators. LetB denote the ordered basis{∂11, . . . , ∂1k, ∂21, . . . , ∂2k, ∂n1, . . . , ∂nk} of
vector fields onM. Then the matrix of the ordered systemS of vector fields{L11, . . . ,

Ln1, L12, . . . , Ln2, . . . , L1n, . . . , Lnn}with respect toB atZ is thenk×n2 matrix dLZ defined
by

dLZ =

n︷ ︸︸ ︷ n︷ ︸︸ ︷ . . .
n︷ ︸︸ ︷

k

{
Zt

k

{
Zt

...
. . .

k

{

 Zt



(2.2)

where thek × n block-matrices on the main diagonal are all equal toZt and the other off-
diagonalk×n block-matrices are all equal to 0. We prove the theorem by considering the two
cases where eithern > k or n < k.

(i) Casen > k. WriteZ as

k

{
Zk

n− k
{

 Zn−k


and letM0 denote the subset of allZ ∈ M such that det(Zk) 6= 0. Then it can be easily
shown thatM0 is an open and dense subset ofM. Thus ifZ ∈ M0 then rank(Z) = k and
the firstk rows ofZ are linearly independent and the lastn − k rows ofZ can be expressed
as linear combinations of the firstk rows. From the matrix (2.2) it follows that the system
A = {L11|Z, . . . , Lk1|Z, L12|Z, . . . , Lk2|Z, . . . , L1n|Z, . . . , Lkn|Z} constitutes a basis for the
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tangent space toM atZ. In fact, the matrix of this ordered basis relative to the ordered basis
B atZ is

k︷ ︸︸ ︷ k︷ ︸︸ ︷ . . .
k︷ ︸︸ ︷

k

{
Ztk

k

{
Ztk

...
. . .

k

{

 Ztk



. (2.3)

Let g ∈ G denote the inverse of the matrixZk then we have

∂αi

∣∣∣∣
Z

=
∑

j=1,...,k

gjiLjα

∣∣∣∣
Z

16 α 6 n 16 i 6 k. (2.4)

Thus the matrix of the ordered basisB relative to the ordered basisA is

g

g

. . .

 g


. (2.5)

If Dω(M) denotes the algebra of allCω differential operators onM then every element
D ∈ Dω(M) can be uniquely written as

D =
∑
|(r)|6s

f(r)∂
(r) (2.6)

where (r) = (r11, . . . , rnk) is a multi-index of integersrij > 0, |(r)| = r11 + · · · + rnk,
∂(r) = ∂

r1
11 . . . ∂

rnk
nk , andf ∈ Cω(M) (see, e.g., [Va], p 6). Define a filtration ofDω(M) by

setting

Dωs (M) =
{ ∑
|(r)|6s

f(r)∂
(r)

}
s > 0.

The smallest integers > 0 such thatD ∈ Dωs (M) is called the degree ofD. An elementD
is calledhomogeneous of degrees if D is of degrees andD /∈ Dωs−1(M). By induction on
degrees, using the fact that

gjiLjα(guvLuβ) = gjiguvLjαLuβ + gji(Ljα(guv))Luβ (2.7)
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and equation (2.4), it follows that a monomial∂rα1
α1 ∂

rα2
α2 . . . ∂

rαk
αk , 1 6 α 6 n, can be expressed

as a sum of terms of the form∏
i=1,...,k

(
rαi

(rαi)1 . . . (rαi)k

)
g
(rαi )1
1i . . . g

(rαi )k
ki L

Sα1
1α . . . L

Sαk
kα + terms of lower degrees inLµν (2.8)

where (
rαi

(rαi)1 . . . (rαi)k

)
denotes a multinomial coefficient andsαj = (rα1)j + · · · + (rαk)j , 1 6 j 6 k, with
sα1 + · · · + sαk = rα1 + · · · + rαk. It follows that for a fixed multi-index(r) with |(r)| = s
∂
r11
11 ∂

r12
12 . . . ∂

r1k
1k ∂

r21
21 . . . ∂

r2k
2k . . . ∂

rn1
n1 . . . ∂

rnk
nk =

∑
s11+···+snk=s

a
(r)

(s)L
s11
11 . . . L

s1k
k1L

s21
12 . . . L

s2k
k2L

sn1
1n . . . L

snk
kn

+ terms of lower degree inLµν (2.9)

where(s) = (s11, . . . , snk) anda(r)(s) are polynomials ingij and thus are functions of class
Cω(M).

Now observe that by definition ofDω(M) terms of degree zero are just scalars, and
equation (2.4) expresses homogeneous terms of degree one in∂αi in terms of degree one inLµν .
Using induction on the degrees ofD, with the first step of the induction being equation (2.4),
we prove thesth step by assuming the(s−1)th step and by using equation (2.1)′ to rewrite the
terms of degree6 s − 1 in equation (2.9) in function of the ordered basis inLµν . It follows
that

D =
∑
|(r)|6s

f(r)∂
(r) =

∑
|(r)|6s

h(r)L
(r) (2.10)

where L(r) = L
r11
11L

r12
21 . . . L

r1k
k1L

r21
12 . . . L

r2k
k2 . . . L

rn1
1n . . . L

rnk
kn and h(r) are functions of class

Cω(M0).
To prove the uniqueness of the coefficientsh(r) we again proceed by induction of the

degrees of D. Fors = 1 we have

D = c1 +
∑
α,i

fαi∂αi 16 α 6 n 16 i 6 k

where1 is the evaluation map defined by

1Z(f ) = f (Z) (∀Z ∈ M, ∀f ∈ Cω(M))
andc ∈ C. Equation (2.4) implies that∑

α,i

fαi∂αi =
∑
α,i

fαi
∑

j=1,...,k

gjiLjα

=
∑
α,j

( ∑
i=1,...,k

fαigji

)
Ljα.

Sethαj =
∑

i=1,...,k fαigji for all α = 1, . . . , n, andj = 1, . . . , k. Then equation (2.1) implies
that ∑

α,i

fαi∂αi =
∑
α,j

hαj
∑

i=1,...,k

Zji∂αi

=
∑
α,i

( ∑
j=1,...,k

Zjihαj

)
∂αi .
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From the uniqueness of the coefficientsfαi it follows that∑
j=1,...,k

Zjihαj = fαi 16 α 6 n 16 i 6 k. (2.11)

Equation (2.11) is a system ofnk linear equations innk unknownshαj , 16 α 6 n, 16 j 6 k.
The coefficient matrix of this system is precisely given in equation (2.3). By assumption this
matrix is invertible, therefore the coefficientshαj are uniquely determined. Thus step one
of the induction holds. For steps we observe that it is sufficient to prove the uniqueness of
the coefficientsh(r) of the homogeneous elements of the highest degrees. Indeed, suppose
that any differential operator of degree6 s − 1 can be uniquely written in terms of the
ordered basisL(r) with coefficients of classCω(M), then using equation (2.1)′ to rewrite the
remainder in equation (2.9) in terms of the ordered basisL(r) of degree6 s − 1 we obtain the
uniqueness of the coefficientsh(r) of terms of degree6 s − 1 ofD in equation (2.10). Now
let (s) = (s11, . . . , snk) such that|(s)| = s and recall thatLαβ =

∑
`=1,...,k Zα`∂β`. Then a

similar calculation as the one used in the derivation of equation (2.9) leads us to the following
equation:

L
s11
11 . . . L

s1k
k1L

s21
12 . . . L

s2k
k2 . . . L

sn1
1n . . . L

snk
kn =

∑
r11+···+rnk=s

b
(s)

(r)∂
r11
11 . . . ∂

r1k
1k ∂

r21
21 . . . ∂

r2k
2k . . . ∂

rn1
n1 . . . ∂

rnk
nk

+terms of lower degree in∂αi (2.12)

where theb(s)(r) are polynomial functions inZ. Now for all multi-indices(r) and(s) such that

|(r)| = |(s)| = s let A = (a(r)(s) ) denote the matrix with row index(s) and column index(r)

wherea(r)(s) are defined by equation (2.9), and similarly letB = (b(s)(r)). Then equations (2.9)
and (2.12) imply that

∂(r) =
∑
|(r ′)|=s

( ∑
|(s)|=s

b
(s)

(r ′)a
(r)

(s)

)
∂(r

′). (2.13)

From the uniqueness of the expression of a differential operator in terms of the ordered basis
∂(r) equation (2.13) implies immediately thatBA = I , whereI is the identity matrix. It
follows thatA is the inverse ofB. In equation (2.10) letDs denote the homogeneous term of
degrees of D then

Ds =
∑
|(r)|=s

f(r)∂
(r) =

∑
|(s)|=s

h(s)
∑
|(r)|=s

b
(s)

(r)∂
(r)

=
∑
|(r)|=s

( ∑
|(s)|=s

b
(s)

(r)h(s)

)
∂(r). (2.14)

Let F = (f(r)) denote the column matrix with row index(r), and similarly setH = (h(s)).
Equation (2.14) immediately impliesBH = F , or using the fact thatA is the inverse ofB
we getH = AF . The uniqueness off(r) then implies the uniqueness ofh(s) for all multi-
indices(s) such that|(s)| = s. Thus the induction is complete, and therefore, the proof of the
uniqueness of coefficientsh(r) in the expression ofD in terms ofL(r) is also achieved. Since
M0 is open and dense inM we may assume thath(r) ∈ Cω(M).

Now if D is a right-invariant differential operator then equation (2.10) implies that( ∑
|(r)|6s

h(r)L
(r)(R(g)f )

)
(Z) = R(g)

( ∑
|(r)|6s

h(r)L
(r)f

)
(Z) (2.15)

for all f ∈ Cω(M), g ∈ G, andZ ∈ M. Since theLαβ are right-invariant vector fields it
follows that theL(r) are right-invariant differential operators. Thus equation (2.15) becomes∑

|(r)|6s
h(r)(Z)(L

(r)f )(Zg) =
∑
|(r)|6s

h(r)(Zg)(L
(r)f )(Zg) (2.16)
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for all g ∈ G and allf ∈ Cω(M). The uniqueness of the coefficientsh(r) implies that

h(r)(Z) = h(r)(Zg) ∀Z ∈ M ∀g ∈ G. (2.17)

SinceH = AF anda(r)(s) are polynomials ingij and since locally the lastn − k rows ofZ
can be expressed as linear combinations of the firstk rows, it follows that thef(r) can be
considered as analytic functions ofZk alone, and hence eachh(r) is an analytic function inZαi ,
1 6 α, i 6 k. Condition (2.17) implies that eachh(r) is locally constant, and we can patch
the neighbourhoods together to show that eachh(r) is globally constant sinceM is connected.
This completes the proof of the theorem for this case.

(ii) Casen < k. To prove the theorem for this case we make use of the special case of
the previous one whenn = k. ThenM = Cn×k is naturally embedded inCk×k. Write every
element ofCk×k in the form [Z1

Z2
] with Z1 ∈ M. ThenG acts onCk×k via ([Z1

Z2
], g) → [Z1g

Z2g
].

From part (i) withk = n we have two bases forD(g), and they are related by equations (2.9)
and (2.12). For each degrees we choose an ordering of these bases as follows.

The corresponding basis elements∂rn11 . . . ∂
rnk
nk andLr11

11 . . . L
rnk
kn are listed first and the

corresponding basis elements∂r11
11 . . . ∂

rij
ij . . . ∂

rkk
kk andLr11

11 . . . L
rij
j i . . . L

rkk
kk with some exponent

rij > 0, n < i 6 k, are listed last. In both cases the exponentsrij sum up tos. From
equations (2.9) and (2.12) we deduce that with this ordering the matricesA andB factored in
block matrices as

A =
[
A′ 0
0 A′′

]
and B =

[
B ′ 0
0 B ′′

]
(2.18)

whereA′ (resp.B ′) is the matrix of the first set of basis elements∂(r) (resp.L(r)) in terms of
the first set of basis elementsL(r) (resp.∂(r)), and similarly forA′′ andB ′′. ThusA′B ′ = I
andA′′B ′′ = I .

Now let D|Z1 =
∑

r11+···+rnk6s fr11...rnk (Z1)∂
r11
11 |Z1 . . . ∂

rnk
nk |Z1 be a right-invariant

differential operator onCn×k. Then obviouslyD is also a right-invariant differential operator
onCk×k; the functionsfr11...rnk can be considered as functions onCk×k which are independent
of the variableZ2. As in the case (i) we now proceed by induction on the degrees, and we
may only consider the case of a homogeneous differential operatorD of degrees. Then for
s = 1D = f11∂11 + · · · + f1k∂1k + f21∂21 + · · · + f2k∂2k + · · · + fn1∂n1 + · · · + fnk∂nk. By part
(i) and our ordering we have

D = h11L11 + h12L21 + · · · + h1kLk1 + h21L12 + · · · + h2kLk2 + · · ·
+hn1L1n + . . . + hnkLkn + hn+1,1Ln+1,1 + · · · + hkkLkk

where thehij are scalars. This leads to the following systems of linear equations:

[Zt ]

 hi1...
hik

 =
 fi1...
fik

 16 i 6 n, and [Zt ]

 hj1
...

hjk

 = 0 n < j 6 k.

(2.19)

Again we may suppose thatZ = [Z1
Z2

] is an invertiblek × k matrix. This forces the
hi,n+1, . . . , hik, 1 6 i 6 n to be zero because thefik are independent ofZ2. This also
implies thathj1 = hj2 = . . . = hjk = 0 for n < j 6 k. ThusD can be written uniquely as∑

i,j=1,...,n hijLji where thehij are constants. Now suppose the theorem holds for differential
operators of degree6 s−1, and considerD =∑r11+···+rnk=s fr11...rnk ∂

r11
11 . . . ∂

rnk
nk , a homogeneous

right-invariant differential operator of degrees. With our new ordering equation (2.14) implies
that

B ′H ′ = F and B ′′H ′′ = 0 (2.20)
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whereH ′ is the column matrix with entrieshr11...rnk andH ′′ is the column matrix with entries
equal to the remaininghr11...rij ...rkk , rij > 0 andi > n. SinceB ′′ is invertibleH ′′ equals 0.

Since forj > n Lji =
∑k

`=1Zj`∂i`, 1 6 i 6 n, depends on the variableZ2, and a formula
analogous to (2.8) expressingLsi11i L

si2
2i . . . L

sik
ki in terms of∂ri1i1 . . . ∂

rik
ik implies that whenever the

exponentsij in the monomialLsi11i . . . L
sij
j i . . . L

sik
ki is positive the corresponding coefficientb(s)(r)

in equation (2.12) must depend on the variableZ2. If we order the bases{∂(r)} and{L(r)} in
such a way that the basis elements involving∂r11

11 . . . ∂
rij
ij . . . ∂

rnk
nk andLs11

11 . . . L
sij
j i . . . L

snk
kn with

j > n andsij > 0 (the lexicographic ordering for example) then the equationB ′H ′ = F

implies that the last columns of the matrixB ′(j > n) involveZ2 and the corresponding last
rows ofH ′ must be zero sinceF does not depend onZ2. Thus we have shown that

D =
∑

r11+···+rnn=s
hr11...rnnL

r11
11 . . . L

rij
j i . . . L

rnn
nn

where the coefficientshr11...rnn are scalars. This completes the proof of part (ii) and hence of
the theorem as well. �

Remark 2.2.

(i) If we consider the symmetrized form of the ordered monomialsLα1β1 . . . Lαsβs , i.e.,∑
σ∈∑s

Lασ(1)βσ(1) . . . Lασ(s)βσ(s) where
∑

s is the symmetric groups of indexs, then it can
be easily shown that the coefficientsh(r) in equation (2.10) are symmetric. Most of the
algebraic proofs of PBW follow this direction. Our proof for the casen = k follows the
proof of PBW in [Go].

(ii) As we can see from the proof of the theorem the coefficientsb
(s)

(r) of the matrixB are
polynomial functions inZ. Taking into account that the coefficientsh(r) are scalars it
follows from equationBH = F that the coefficientsf(r) are polynomials inZ. Thus if
U(g) (resp.U(g′)) denotes the universal enveloping algebra ofg (resp.g′), whose definition
already appeared in [Po], then

U(g) = D(g) and U(g′) = D(g′).

3. An algebraic analogue of Segal’s theorem for Bargmann–Segal–Fock spaces

If Z = (Zij ) is an element ofCn×k let Z = Xij +
√−1Yij ; 1 6 i 6 n, 1 6 j 6 k. If

dXij (resp. dYij ) denotes the Lebesgue measure onR, we let dZ denote the Lebesgue product
measure onCn×k. Define a Gaussian measureµ onCn×k by

dµ (Z) = π−nk exp[−Tr(ZZ∗)] dZ. (3.1)

A function f : Cn×N → C is holomorphic square-integrable if it is holomorphic on
the entire domainCn×k and if

∫
Cn×k |f (Z)|2 dµ(Z) < ∞. Let Fn×k denote theBargmann–

Segal–Fockspace of all holomorphic square-integrable functions. Endowed with the inner
product

(f |g) =
∫
Cn×k

f (Z)g(Z) dµ (Z) f, g ∈ Fn×k (3.2)

Fn×k has a Hilbert space structure. It can be easily verified that the inner product defined by
equation (3.2) coincides with the following inner product:

〈f, g〉 = f (D)g(Z̄)|Z=0 (3.3)

wheref (D)denotes the formal power series obtained by replacingZαi by the partial derivatives
∂αi(16 α 6 n, 16 i 6 k). Note that the subspacePn×k of all polynomial functions onCn×k
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is dense inFn×k. Later in this section we will use equation (3.3) to define inner products on
generalized Bargmann–Segal–Fock spaces when eithern or k, or both, tend to infinity.

Let G0 = U(k) (resp.G′0 = U(n)) then it is easy to verify that the representationRG0

(resp.LG′0) defined onFn×k by right (resp. left) translation is unitary. LetLG′0 ⊗ RG0 denote
the joint action ofG′0 ×G0 onFn×k by

[(LG′0 ⊗ RG0)(g
′, g)f ](Z) = f ((g′)tZg) (3.4)

for all (g′, g) ∈ G′0 ×G0 andf ∈ Fn×k. Then the representationsLG′0 andRG0 aredual (see
TT1]) and we have the following decomposition:

Fn×k =
∑
(λ)

⊕I(λ) (3.5)

where in equation (3.5) the label(λ) denotes both the signature of an irreducible representation
of G′0 andG0 of the form(m1, m2, . . . , mr) with m1 > m2 > · · · > mr > 0 non-negative
integers andr = min(n, k). The subspaceI(λ) denotes the(λ)-isotypic component, i.e.,
the direct sum of all irreducible subrepresentations ofRG0 (resp.LG′0) that belong to the
equivalence classλG0 (resp.λG′0). Moreover, the restriction ofLG′0⊗RG0 toI(λ) is irreducible;

i.e.,I(λ) ≈ V λG′0 ⊗WλG0 , whereV λG0 (resp.W
λG′0 ) is an irreducibleG0-module of class(λG0)

(resp.G′0-module of class(λG′0)). Moreover, the vector

f(λ)(Z) = 1m1−m2
1 (A)1

m2−m3
2 (Z) . . . 1mr (Z) Z ∈ Cn×k (3.6)

with1i(Z), 16 i 6 r, theith principal minor ofZ, is the highest weight vector corresponding
to the signature(λG′0, λG0) (see [Ze]). SinceG (resp.G′) is the complexification ofG0 (resp.
G′0) the ‘Weyl’s unitarian trick’ (cf [Va]) implies that the representationL⊗R ofG′ ×G′ on
I(λ) is also irreducible (but of course not unitary) with the same signature(λG′ , λG) and the
same highest weight vectorf(λ). Thus we have a multiplicity-free decomposition ofFn×k into
irreducibleG′ ×G-submodules.

We now consider the Weyl algebraWn×k of differential operators
∑

(r)(s) c(r)(s)Z
(r)∂(s)

with polynomial coefficients;Z = (Zαi ), ∂ = (∂αi), Z(r) = Zr11
11 . . . Z

rnk
nk

, ∂(s) = ∂s11
11 . . . ∂

snk ,
c(r)(s) ∈ C, andc(r)(s) 6= 0 for at most finitely many multi-indices(r), (s). Then as an algebra
Wn×k is generated by the 2nk generatorsZαi, ∂αi subject to the relation

[∂αi, Zβj ] = δαβij , [Zαi, Zβj ] = [∂αi, ∂βj ] = 0

where [, ] denotes the commutator andδαβij is the Kronecker symbol which equals 1 ifα = β
andi = j and 0 otherwise. For more details on Weyl algebras see, e.g., [Di, Eh].

The Weyl algebraWn×k acts onPn×k, and hence onFn×k, by formal differentiation. It
is easy to verify that the elementsZ(r)∂(s) form a basis for the vector spaceWn×k. LetWm

n×k
be the subset of all linear combinations ofZ(r)∂(s) such that|(r)| + |(s)| 6 m. Then clearly
Wm
n×kW

m′
n×k ⊂ Wm+m′

n×k , soWn×k is a filtered algebra. SetW−1
n×k = φ, for w ∈ Wn×k the integer

m > 0 such thatw ∈ Wm
n×k butw /∈ Wm−1

n×k is called theorder ofw. then the Weyl algebraWn×k
is the subalgebra of the algebraDw(M) of all differential operators defined by equation (2.6)
for whichf(r) are polynomial functions.

Definition 3.1. Let A be a subalgebra of the Weyl algebraWn×k then the centralizer (or
commutant) ofA in Wn×k is defined as the set

{w ∈ Wn×k : [w, a] = 0, ∀a ∈ A}.
The centre ofA is defined as the set

Z(A) = {w ∈ A : [w, a] = 0, ∀a ∈ A}.
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Clearly the universal enveloping algebrasU(g) and U(g′) (cf remark 2.2 (ii)) are
subalgebras of the Weyl algebraWn×k. In this context we have the following corollary 3.2 which
is an algebraic analogue of Segal’s theorem. Note that corollary 3.2 is essentially theorem 7
(p 553) together with the discussion on Capelli identities (p 564) of [Ho2]. However, our proof
is very different from that of [Ho2]. Our proof follows immediately from theorem 2.1, in which
D(g′) (resp.D(g)) is by hypothesis the algebra of right (resp. left) invariant differential operators
with analytic coefficients (see equation (2.6)) (a local property), but surprisingly theorem 2.1
implies that these coefficients are polynomials (cf remark 2.2 (ii)) (a global property). Whereas
[Ho2] already assumes thatD(g′) andD(g) are subalgebras of the Weyl algebraWn×k.

Corollary 3.2. The universal enveloping algebraU(g′) is the centralizer of the universal
enveloping algebraU(g) in the Weyl algebraWn×k, and vice-versa. Moreover,

Z(U(g)) = Z(U(g′)) = U(g) ∩ U(g′).

Proof. From remark 2.2 (ii) we know thatU(g) = D(g) andU(g′) = D(g′). Now it is easy
to show that a differential operatorD is right (resp. left) invariant if and only [Rij ,D] = 0,
∀i, j = 1, . . . , k (resp. [Lαβ,D] = 0, ∀α, β = 1, . . . n). Then theorem 2.1 implies that
the centralizer ofU(g′) in Wn×k is U(g), and vice versa. By definition the centre ofU(g) is
contained in bothU(g) and its centralizer inWn×k, so obviouslyZ(U(g)) = U(g) ∩ U(g′).
Similarly,Z(U(g′)) = U(g′) ∩ U(g). Thus the proof of the theorem is complete. �

Remark 3.3. In physics, ifG is a symmetry group of some physical system, then the spectra of
theG-invariant operators determine the observable quantum numbers of the physical system.
Elements of the centre of the universal enveloping algebra of the Lie algebra ofGare sometimes
called Casimir invariants (cf, e.g., [Ba+Ra] or [Ze]). In [Ba+Ra] Weyl algebras are also called
Heisenberg algebras ([Di] gives a slightly different definition of a Heisenberg algebra) and
several important theorems relating Heisenberg fields and Lie fields of classical groups are
proved.

Generators of Casimir invariants of classical groups are well known (see, e.g., [Ba+Ra]
or [Ze]). However, in the context of corollary 3.2, the minimal number of algebraically
independent generators ofZ(U(g) (resp.Z(U(g′)) may differ from the one given in [Ba+Ra]
or [Ze]. This is not a contradiction but reflects the statement of theorem 2.1 and the fact that we
have an explicit decomposition ofFn×k into isotypic components with double signatures (and
hence ‘double spectra’). To wit we consider the following example described in the appendix.

From the appendix, as an example, we consider the casen = 2 and k = 3. Then
{1,Tr([L]),Tr([L]2)} generatesZ(U(g′)). SoTr([L]3) can be expressed as a polynomial in
1, Tr([L]), andTr([L]2). From equation (A.3) we see thatTr([R]3) can be expressed as a
polynomial in 1,Tr([R]) andTr([R]2). Thus, in general, if we fixn, for example, and consider
the casek arbitrary with k > n, then to compute the spectra of the representationR onFn×k
we only need to consider then Casimir invariantsTr([L]i ), 0 6 i 6 n. All of these facts
are, of course, theoretically evident since corollary 3.2 affirms thatZ(U(g)) = Z(U(g′)).
Nevertheless they are important in order to understand the generalization of corollary 3.2 to
the case of infinite-dimensional unitary and general linear groups. This is what we will turn
our attention to.

Representation theory ofU(∞) (andGL∞(C)) has a long history. Starting with the work
of Segal in [Se2], it was thoroughly investigated by Kirillov in [Ki], Stratila and Voiculescu
in [St+Vo], Pickrell in [Pi], Ol’shanskii in [Ol1], Gelfand and Graev in [Ge+Gr] and Kac in
[Ka], to cite just a few. A more complete list of references can be found in the comprehensive
and important work of Ol’shanskii in [Ol2]. For our work we will mostly quote the latter.
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LetG0(k) andG(k) denote the unitary groupU(k) and the general linear groupGL(k,C),
respectively. Then theinductive limitsG0(∞) = lim→G0(k) =

⋃∞
k=1G0(k) andG(∞) =

lim→G(k) =
⋃∞
k=1G(k) are defined as follows:

G(∞) = {g = (gij )i,j∈N : all but a finite number ofgij − δij are 0 andg is invertible}
and

G0(∞) = {u ∈ G(∞) : u∗ = u−1}.
Definition 3.4 (G I Ol’shanskii). A unitary representation of the groupG0(∞) is called tame
if it is continuous in the group topology in which the descending chain of subgroups of the type
{(1k 0

0 ∗
)}, k = 1, 2, . . . constitutes a fundamental system of neighbourhoods of the identity1∞.

ConsiderG0(∞) and assume that for eachk a unitary representation(Rk,Hk) of G0(k)

is given and an isometric embedding (of Hilbert spaces)ik : Hk → Hk+1 commuting with the
action ofG0(k) is given (i.e.,ik ◦ Rk(u) = Rk+1(u) ◦ ik ∀u ∈ G0(k)). LetH∞ denote the
Hilbert completion of

⋃∞
k=1Hk, then there exists uniquely a unitary representation ofR∞ of

G0(∞) onH∞ defined by

R∞(u)f = Rk(u)f if u ∈ G0(k) and f ∈ Hk.
The representation (R∞,H∞) is called the inductive limit of the sequence
{(Rk,Hk)}. Then we have the following theorem (see [Ol2] for a proof.).

If the representations(Rk,Hk) are all irreducible then the inductive limit(R∞,H∞)
is also irreducible.

Let λG0(k) = (m1, . . . , mk), m1 > . . . > mk > 0, mk ∈ N, be the signature of an
irreducibleG0(k)-module{ρλ, V λG0(k)}. In [Ol2] it was shown that

All unitary irreducible tame representations ofG0(∞) are inductive limits of
sequences of the form{ρλ, V λG0(k)}, where in each(λ) = (m1, m2, . . . , . . .) mi are
equal to0 if i is sufficiently large.

It follows from the ‘Weyl’s unitarian trick’ that all irreducible tame representations of
G(∞) are inductive limits of sequences of the form{ρλ, V λG(k)}.
Definition 3.5 (G I Ol’shanskii). A representation ofG0(∞) (resp. G(∞)) is called
holomorphic if it is a direct sum (of any number) of irreducible tame representations.

Now consider again the dual action ofG′0(n)×G0(k) on the Hilbert spaceFn×k. Fixn and
letG0(n,∞) =

⋃∞
k=1G0(k). Obviously the natural embeddingik : Fn×k ↪→ Fn×(k+1) satisfies

theik ◦ (L(G′0)n⊗R(G0)k )(u
′, u) = (L(G′0)n⊗R(G′0)k (u′, u))◦ ik for all (u′, u) ∈ G′0(n)×G0(k).

LetFn×∞ denote the Hilbert completion of
⋃∞
k=1Fn×k, and let{L(G′0)n⊗R(G0)∞ ,Fn×∞} be the

inductive limit of the sequence{L(G′0)n ⊗R(G0)k ,Fn×k}. Then we have the following theorem.

Theorem 3.6.The representationL(G′0)n⊗R(G0)∞ (resp.LG′n⊗RG∞ ) onFn×∞ is holomorphic
and the Hilbert spaceFn×∞ is decomposed into an orthogonal direct sum

Fn×∞ =
∑
(λ)

⊕I(λ)n×∞ (3.7)

where in equation (3.7) the label(λ) denotes both the signature of an irreducible
representation of G′0(n) and of G0(n,∞) of the form (m1, m2, . . . , mn) and
(m1, m2, . . . , mn, 0, 0, . . .), respectively. The restriction ofL(G′0)n⊗R(G0)∞ (resp.LG′n⊗RG∞ )

to the isotypic componentI(λ)n×∞ is irreducible. Moreover the vectorf(λ) defined by
equation (3.6) but withZ ∈ Cn×∞ is the highest weight vector corresponding to the double
signature(λG′n , λG∞).
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Proof. First let us observe that the highest weight vectorf(λ) of the irreducibleG0(n)×G0(k)-
moduleI(λ)n×k remains the same for allk > n. Sincef(λ) is a cyclic vector for eachI(λ)n×k, k > n,
it follows that we have the embedding

i
(λ)
k : I(λ)n×k ↪→ I(λ)n×(k+1)

such that

i
(λ)
k ◦ (L(G′0)n ⊗ R(G0)k|I(λ)n×k )(u

′, u) = (L(G′0)n ⊗ R(G0)k|I(λ)n×k )(u
′, u) ◦ i(λ)k

for all (u′, u) ∈ G′0(n)×G0(k). Therefore, as an inductive limit of irreducible representations
L(G′0)n ⊗ R(G0)∞|I(λ)n×∞ is irreducible. Since at each stage we have the orthogonal direct

sumFn×k =
∑

(λ)⊕I(λ)n×k at the limit we must haveFn×∞ =
∑

(λ)⊕I(λ)n×∞, and thus the
proof of the theorem is complete. �

Now letG′0(∞)×G0(∞) =
⋃∞
n=1G0(n,∞)and letF∞×∞ denote the Hilbert completion

of
⋃∞
n=1Fn×∞. Then following the same process as in theorem 3.6 we can prove that

{L(G′0)∞ ⊗R(G0)∞ ,F∞×∞} (resp.{LG′∞ ⊗RG∞ ,F∞×∞}) is the inductive limit of the sequence
{L(G′0)n ⊗ R(G0)∞ ,Fn×∞} (resp.{LG′n ⊗ RG∞ ,Fn×∞}). Similarly if (λ) = (m1, m2, . . .) is the
signature of either an irreducible tame representation ofG′(∞) or ofG(∞) with mi equal to
0 for sufficiently largei, then the restriction ofL(G′0)∞ ⊗R(G0)∞ to the(λ)-isotypic component

I(λ)∞×∞ is irreducible as the inductive limit of the sequence

{L(G′0)n ⊗ R(G0)∞

∣∣
I∞n×∞

, I(λ)n×∞}.
Corollary 3.7. The same conclusions as in theorem 3.6 hold forG′0(∞) × G0(∞)-modules
F∞×∞ andI(λ)∞×∞.

Remark 3.8. A proof of corollary 3.7 can be found in [Ol2] where it is referred to as a Peter–
Weyl theorem for the groupG0(∞).

Now preserve the notations of theorem 3.6, fixnand consider the chainFn×k ⊂ Fn×(k+1) ⊂
· · · ⊂ Fn×∞. For each pair(n, k) let g(n, k) andg′(n, k) the Lie algebras generated by the
infinitesimal operators defined by equation (2.1). Consider theinverse(orprojective) limit (see,
e.g., [Ro] for the definition of inverse limits) of the inverse system of modules{g′(n, j), ψj

i }
where for each pair(i, j), i 6 j , the connecting morphismψj

i : g′(n, j) → g′(n, i) is the
truncation map. For example, if

L
j

αβ =
∑

`=1,...,j

Zα`∂β` and Liαβ =
∑

`=1,...,i

Zα`∂β` 16 α, β 6 n

thenψj

i (L
j

αβ) = Liαβ . Let g′(n,∞) ≡ lim← g(n, k) denote the inverse limit of the system of
modules{g′(n, k), ψk

i }. Then clearlyg′(n,∞) is the Lie algebra defined by the generators

Ln×∞αβ =
∞∑
`=1

Zα`∂β` 16 α, β 6 n (3.8)

where in equation (3.8) theLn×∞αβ act on the inductive chainFn×k ⊂ Fn×(k+1) ⊂ . . . ⊂ Fn×∞
by formal differentiation. LetU(g′(n,∞)) denote the universal enveloping algebra ofg′(n,∞)
then the action ofg′(n,∞) extends obviously to an action ofU(g′(n,∞)) on the inductive
chainFn×k ⊂ Fn×(k+1) ⊂ . . . ⊂ Fn×∞.

The Lie algebra of the infinitesimal action ofG(n,∞) onFn×∞ is defined by the generator

Rn×∞i,j =
∑

µ=1,...,n

Zµi∂µj ∀i, j ∈ N. (3.9)

To define thedual universal enveloping algebrato U(g′(n,∞)) is a little more delicate.
For this we must generalize first the notion of a Weyl algebra to fit our context.
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Definition 3.9. An element of the generalized Weyl algebraW̃n×∞ is a formal series or sum in
the column indices of monomials in the indeterminates 1,Zαi and∂βj ; 16 α, β 6 n, i, j ∈ N.

It is clear thatW̃n×∞ is an algebra in the formal sense. However, to handle the scalars in
the operations of this algebra requires caution. For example, in remark 3.3 withn = 1 we can
define the elements Tr([L]s), Tr([Rs ]), s > 1, ofWn×∞ by

Tr([L]s) = (Ln×∞11 )s =
( ∞∑
i=1

Zi∂i

)s
Tr([R]s) =

∞∑
i1,is=1

Ri1i2Ri2i3 . . . Ris i1 Rij = Zi∂j i, j ∈ N
(3.10)

but the relations (A.3) and (A.6) must be handled with care. To wit we compute

Tr([R]2) =
∞∑

i,j=1

RijRji =
∞∑

i,j=1

(Rii +ZiZj∂j ∂i)

= (6)Tr([L])− Tr([L]) + (Tr[L])2

where the symbol6 denotes the formal series
∑∞

j=1 in the indeterminate 1. With this definition
whenn = 1 equation (A.6) generalizes to

Tr([R]3) = Tr([L]3) + 2(6 − 1)(Tr([L])2 + (6 − 1)2 Tr([L]).

This can be formalized by lettingP(6) denote the commutative polynomial ring overC in the
indeterminate6, thenW̃n×∞ becomes an algebra overP(6). ClearlyW̃n×∞ acts onFn×∞
by formal differentiation and

⋃∞
k=1Wn×k is contained inW̃n×∞. Moreover the projection

mappk : W̃n×∞ → Wn×k is defined by truncation. Similarly we can defineŨ(g(n,∞)) as
the algebra which consists of formal series or sums generated by theRij and6; i, j ∈ N.
An example of an element of̃U(g(n,∞)) is

∑∞
i,j=1(

∑n
α=1Zαi∂αj )(

∑n
β=1Zβj∂βi). Clearly⋃∞

k=1U(g(n, k)) is contained inŨ(g(n,∞)). ObviouslyU(g′(n,∞)) and Ũ(g(n,∞)) are
subalgebras of̃Wn×∞. In this context we have the following generalization of theorem 3.3.

Theorem 3.10.The universal enveloping algebraU(g′(n,∞)) is the centralizer of the
universal enveloping algebrãU(g(n,∞)) in the generalized Weyl algebrãWn×∞, and vice
versa. Moreover, ifZ(U(g′(n,∞))) (resp.Z(Ũ(g(n,∞)))) denotes the centre ofU(g′(n,∞))
(resp.Ũ(g(n,∞))) thenZ(U ′(g′(n,∞))) = Z(Ũ(g, (n,∞))) = U(g′(n,∞)) ∩ Ũ(g(n,∞)).

Proof. For eachk let p′k be the projection of the inverse limitU(g′(n,∞)) which is defined
by truncation then

p′k(U(g′(n,∞))) = U(g′(n, k)).
SinceU(g′(n, k)) is the centralizer ofU(g(n, k)) inWn×k and we have the chainU(g(n, k)) ⊂
U(g(n, k + 1)) ⊂ · · · ⊂ Ũ(g(n,∞)) it follows that the centralizer of̃U(g(n,∞) in W̃n×∞ is
U(g′(n,∞)). The converse can be proved in a similar fashion. The proof of the statement
regarding the centres is now obvious. �

Finally, let g(∞,∞) denote the inverse limit ofg(n,∞). Thusg(∞,∞) is generated
by the basis elementsR∞ij =

∑∞
α=1Zαi∂αj ; i, j ∈ N. Let g′(∞,∞) = ∪∞n=1g

′(n,∞),
then g′(∞,∞) is the Lie algebra generated by the basis elementsLαβ =

∑∞
i=1Zαi∂βi ;

α, β ∈ N. Similarly to Definition 3.8 we define the Weyl algebrãW∞×∞ which consists
of elements which are formal series or sums in both row and column indices of the monomials
in the indeterminates 1,Zαi , and∂βj ; α, β, i, j ∈ N. ThusW̃∞×∞ is an algebra over the
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commutative ringP(
∑
). The universal enveloping algebrasU(g′(∞,∞)) andŨ(g(∞,∞))

are defined similarly. Obviously they are subalgebras ofW̃∞×∞. Let Z(Ũ(g(∞,∞)) and
Z(U(g′(∞,∞))) denote their respective centres. Then, similarly to theorem 3.10, we have
theorem 3.11 as follows.

Theorem 3.11.The universal enveloping algebraU(g′(∞,∞)) andŨ(g(∞,∞)) are mutual
centralizers in the generalized Weyl algebraW̃∞×∞. Moreover, we have

Z(U(g′(∞,∞))) = Z(Ũ(g(∞,∞))) = U(g′(∞,∞)) ∩ Ũ(g(∞,∞)).
Remark 3.12.

(i) Elements of the centres defined in theorems 3.10 and 3.11 are called generalized Casimir
invariants. In [Ol3] a notion of generalized Casimir invariants are defined but it is
not clear to us if they have any connection with ours. It can be easily shown that the
families {Tr([Ln×∞]s)}s>0, {Tr([Rn×∞]s)}s>0 form two bases for the common centre
of U(g′(n,∞)) and Ũ(g(n,∞)), where Tr([Ln×∞]s) and Tr([Rn×∞]s) are defined,
respectively, by

Tr([Ln×∞]s) =
∑

α1,...,αs=1

Ln×∞α1α2
. . . Ln×∞αsα1

and

Tr([Rn×∞]s) =
∞∑

i11,...,is=1

Rn×∞i1i2
. . . Rn×∞is i1

.

Finally, note that in our process we have fixedn and letk → ∞, and then letn → ∞,
but if we reverse the roles ofn andk the same conclusions still hold.

(ii) These generalized Casimir invariants act on the inductive limitsFn×∞ andF∞×∞ by
formal differentiation. It can be shown that their spectra satisfy a Chevalley–Racah-
type theorem and this fact is used to decompose tensor products of irreducible tame
representations ofU(∞) in [Ho+TT].

4. Conclusion

We have shown that a PBW theorem can be generalized to the pair(GL(n,C),GL(k,C))
and a Theorem by Segal can be generalized for the pairs(GL(n,C),GL(k,C)),
(GL(n,C),GLn×∞(C)) and (GL∞×∞(C),GL∞,∞(C)). We also gave a generalization of
the notion of Casimir invariants and they seem to have important applications to physics;
especially in the problem of explicit decompositions of tensor products of irreducible tame
representations ofU(∞). In part II of this paper we will give the same generalizations to other
classical dual pairs.

Appendix

Let [L] (resp. [R]) the matrix with entriesLα,β, 1 6 α, β 6 n (resp.Rij ; 1 6 i, j 6 k) then
we have two sets of generators of Casimir invariants Tr([L]s), Tr([R]s), s > 1, corresponding
to the representationsL andR, respectively.

For s = 1 we have

Tr([L]) =
∑
α

Lαα =
∑
α

(∑
i

Zαi∂αi

)
=
∑
i

(∑
α

Zαi∂αi

)
=
∑
i

Rii = Tr(R).
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For s = 2 we have

Tr([L]2) =
∑
α,β

LαβLβα =
∑
α,β

(∑
i

Zαi ∂βi

)(∑
j

βj ∂αj

)
=
∑
α,β

(∑
i

Zαi∂αi +
∑
i,j

ZαiZβj ∂βi∂αj

)
=
∑
α,β

(
Lαα +

∑
i,j

ZαiZβj ∂βi∂αj

)
.

So

Tr([L]2) = nTr(L) +
∑
α,β

∑
i,j

ZαiZβj ∂βi∂αj (A.1)

and

Tr([R]2) =
∑
i,j

RijRji =
∑
i,j

(∑
α

Zαi∂αj

)(∑
β

Zβj ∂βi

)
=
∑
i,j

(∑
α

Zαi∂αi +
∑
α,β

ZαiZβj ∂αj ∂βi

)
=
∑
i,j

(
Rii +

∑
α,β

ZαiZβj ∂αj ∂βi

)
.

So

Tr([R]2) = k(Tr[R]) +
∑
i,j

∑
α,β

ZαiZβj ∂αj ∂βi . (A.2)

It follows from equations (A.1) and (A.2) that

Tr([R]2) = Tr([L]2) + (k − n)Tr([L])
Tr([L]2) = Tr([R]2) + (n− k)Tr([R]).

(A.3)

For s = 3 we have, after skipping some tedious computations,

Tr([L]3) =
∑
α,β,γ

LαβLβγLγα = 2nTr([L]2) + (Tr([L]))2 − (n2 + 1)Tr([L])

+
∑
α,β,γ

∑
i,j,`

ZαiZβjZγ`∂βi∂γj ∂α` (A.4)

and

Tr([R]3) = 2k Tr([R]2) + (Tr([R])2 − (k2 + 1)Tr([R]) +
∑
i,j,`

∑
α,β,γ

ZαiZβjZγ`∂αj ∂β`∂γ i .

(A.5)

From equations (A.4) and (A.5) it follows that

Tr([R]3) = Tr([L]3) + 2(k − n)Tr([L]2) + (k − n)2 Tr([L])
Tr([L]3) = Tr([R]3) + 2(n− k)Tr([R]2) + (n− k)2 Tr([R]).

(A.6)

For s large the computations become very complicated, but using induction we can show that
Tr([R]s) can be expressed as

Tr([R]s) =
∑

i=1,...,s

ci Tr([L]i ) (A.7)
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where the constantsci are integers depending onn andk, andcs = 1. Thus if we consider the
canonical filtration(Us(g))s>0 (and similarly(Us(g′))s>0) and letGr(g) denote the associated
graded algebra then the maps

ϕs : Zs(U(g))/Zs−1(U(g)) −→ Zs(U(g′))/Zs−1(U(g))

which send Tr([R]s) onto Tr([L]s), s > 0, define a vector space isomorphism of the graded
algebra associated withZ(U(g)) onto the graded algebra associated withZ(U(g′)).
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